The Myths ,
M“Sts and Migrainesf
of Migrations

Marc van Gend

@marcvangend

Drupal Tech Talk
April 26, ezCompany, Tilburg

Who are you?

* Developers

* Project managers

* Site owners ("the client")
* None of the above

Quiz

The key to a successful migration is...

A. Good clean source data
B. A committed, cooperating client
C. Plenty of development time

You were right! You were right!

Everybody was right!

Non-Drupal to Drupal migrations

* Source - Process - Destination
Setup

My First Migration™

Source data

Process plugins

Project context

Tips

* % * % * oF

*Myth
Migrations are Complicated

Source.
Process.
Destination.

Migrations are straight-forward.
Literally.

Source

* Database, File, URL...

* 1result per migration item

* Defines unique Source ID
PHP:

class MySourcePlugin extends SourcePluginBase

Drupal Console:

drupal generate:plugin:migrate:source {}

Process

* Get, Concat, MigrateLookup, custom...
* Assigns values to fields
* Chainable

PHP:

class MyProcessPlugin extends ProcessPluginBase {}

Drupal Console:

drupal generate:plugin:migrate:process

Destination

* Node, Term, User, Redirect, Setting, custom...
* Writes collected data to Drupal DB
* Can support rollback
* Maps Source ID -> Destination ID
PHP:

class MyDestinationPlugin extends DestinationBase {}

Drupal Console:

(nope)

*Must
Theright tools

* Modules

* Tools

* Custom module
* Test site

Modules

Migrate (core)

Migrate APl and base functionality
Continuous migrations with ID mapping

Migrate Plus

Define migrations as config entities
Additional plugins and enhancements
Data parsers and authentication
Examples

Migrate Tools

Drush commands and Ul

Tools
Drush

Import migration config
Run migrations
Rollback, reset, status, etc.

Drupal Console

Create plugins

Database manager
PhpStorm, phpMyAdmin

Custom module

migrate demo

migrate demo.info.yml

—— config

L install
F—— migrate plus.migration.demo node article.yml
L migrate plus.migration group.demo.yml

L— src
L — Plugin
L — migrate
process
L TitleCleanup.php
L— source
L — DemoNodeArticle.php

Demo Site

Source
Music database (Chinook):
Artist < Album

Drupal

* Artist: Title
* Album: Title, Artist, Release date, URL

My First Migration™

* Migrate Group
* Migration
* Go!

*Must
Handwritten YAML

name: Marc
favorites:
music: dEUS
beer:
- IPA
- Triple
colleagues:

name: Dirk
role: Support engineer

name: Joyce
role: Drupal developer

Migration groups

* Groups migrations (duh!)

* Import all migrations in group

* Shared configuration

Home » Administration » Structure

MIGRATION
MACHINE NAME
GROUP
Demo
demo
Imports

Some other
group

some_other group

DESCRIPTION

A few demo imports, to
demonstrate how to
Implement migrations.

Just for fun

SOURCE
TYPE

SQL
database

dev/null

OPERATIONS

List migrations

List migrations

Migration group config

migrate demo/config/install/migrate plus.migration group.demo.yml

1d: demo
label: Demo Imports
description: A few demo 1mports, to demonstrate how to 1mplement migrations.
source type: SQL database
shared configuration:
source:
key: migrate
dependencies:
enforced:
module:
- migrate demo

Migration source: DB settings

settings.php

Sdatabases['migrate'] ['default'] = array
'database' => 'migrate demo source',
'username' => 'milgrate demo source',
'password' => 'Secret!',
'prefix!' => '"',
'host' => '127.0.0.1",
'port' => '3306"',
'namespace' => 'Drupal\\Core\\Database\\Driver\\mysqgl',
'driver' => 'mysqgl',

Migration source: source plugin

migrate demo/src/Plugin/migrate/source/DemoNodeArtist. php

@MigrateSource

class DemoNodeArtist extends SqlBase {

migrate demo/src/Plugin/migrate/source/DemoNodeArtist. php

@inheritdoc

public function query () {
sSquery = Sthis->select ('Artist', 'a')
->fields('a', |
"ArtistId',
'Name',
1) 7

return Squery;

migrate demo/src/Plugin/migrate/source/DemoNodeArtist. php

@inheritdoc

public function fields ()
Sfields = |
"ArtistId' => S$this->t ('Artist ID'),
'"Name' => $Sthis->t ('Artist name'),
17

return Sfields;

migrate demo/src/Plugin/migrate/source/DemoNodeArtist. php

Migration config

migrate demo/config/install/migrate plus.migration.demo node artist.yml

1d: demo node artist
label: Artists
migration group: demo

source:
plugin: demo node artist
process:
title: Name
type:

plugin: default value
default value: artist

destination:
plugin: entity:node

*Must
Importing your config

S drush config-import \
-—-partial \
—--source=modules/custom/migrate demo/config/install

Go!

$ drush migrate-import demo node artist

Or use the Ul;

Home » Administration » Structure » Migrations » Edit migration group

MIGRATION

Albums

Artists

MACHINE NAME

demo_node_album

demo_node_artist

STATUS

Idle

Idle

TOTAL

347

275

IMPORTED

347

275

UNPROCESSED

MESSAGES

LAST IMPORTED

2018-03-28 01:25:12

2018-03-24 21:39:31

OPERATIONS

Execute

Execute
™

Source data

(WHAT COLOR DO YOU
WANT THAT DATABASET

I THINK
MAUVE HAS

Human interaction. Where things get messy.

*Myth
“The data is clean and complete”
*Migraine
Believe me. It's not.

Getting the data

* How can we access the data?
* Direct access? Export? API?
* How do we get updates?
* How often?
* Incremental?
* With timestamps?
* How about assets like PDF's and images?
* What size are we talking about?
* Number of items, GB's of files

Make some friends at the supplier's side.

Analyze the provided data

Ask the most stupid questions you can think of.

* What does it all mean?
* Does everything have a unique, unchanging ID?
* Do users have unique email addresses?
* Do all articles have titles?
* Arerecords being added and deleted?
* Yes = Are unique ID's reused?
* Does the data contain duplicates?
* No = Really? Did you check?

Do not assume people know their own data.

Start planning

* Make choices
* Don't spend 4h automating what takes 8h manually
* Agree what you will (not) do
* Have the result tested
* Functional
* Content
* Write a plan for the go-live
* Content freeze
* Pick dates
* |Instruct editors

*Myth
Migrations are Simple

(I know. I said migrations are straight-forward.)

Prepa re to write custom Processors.

(psst, don't forget to start the demo)

Processors are Awesome

Default process plugin: Get

process:
title: Name

“Get the 'Name' property from the current row and use it as title”

Shorthand for:

process:
title:

plugin: get

source: Name

Processors can have
configuration

process:

type:
plugin: default value
default value: album

In the plugin:

Sthis->configuration['default value'];

Linking migrations together

The migration_lookup process plugin

process:
field artist:
plugin: migration lookup
migration: demo node artist
source: ArtistId

“Get the ID of the entity which was created
when demo_node_artist imported this ArtistID.”

Chaining process plugins

process:
uid:
plugin: author deduplicate
source: author id

plugin: migration lookup

migration: users

plugin: default value
default value: 44

A custom processor

migrate demo/src/Plugin/migrate/process/SpotifyInfo.php

@MigrateProcessPlugin

class SpotifyInfo extends ProcessPluginBase {

migrate demo/src/Plugin/migrate/process/SpotifyInfo.php

/**
* {@inheritdoc}
*/
public function transform(Svalue, MigrateExecutablelnterface Smigrate executabl
Stype = $this->configuration['type'l];
Squery info = Sthis->getSpotifyQueryInfo (Svalue, Stype);
Sspotify result = Sthis->spotifyQuery(Squery info['query'], Stype):

Sproperty = Sthis->configuration|['property'];
Sdata path = array merge (Squery infol['parents'], explode('][', Sproperty)):;

return NestedArray::getValue ($spotify result, $data path);

migrate demo/src/Plugin/migrate/process/SpotifyInfo.php

protected function getSpotifyQueryInfo (Svalue, Stype) {
switch ($Stype) |
case 'album':
// Expect $value to be an array: [album title, artist name].
list(Stitle, Sartist) = Svalue;
Squery = "album:$title artist:$Sartist";
Sparents = ['albums', 'items', 0];
break;

if (empty(Squery)) {
throw new MigrateSkipProcessException('Could not build a query.');

J

return ['query' => S$Squery, 'parents' => S$Sparents];

migrate demo/src/Plugin/migrate/process/SpotifyInfo.php

A custom processor: config

process:
field release date:
plugin: spotify info
source:
- Title
- ArtistName
type: album
property: release date
field spotify url/uri:
plugin: spotify info
source:
- Title
- ArtistName
type: album
property: external urls][spotify

*Migraine
A migration never comes alone

If everything was perfect, there wouldn't be a migration, right?

Client goals

What they say What it means

New site New URL's

New design An image on every node

New navigation Revised categories

New workflow Different input filters

...and the existing content will magically fit in.

Complexity =changes®
Reduce the number of changes introduced with the migration.

Spotify process plugin = A really bad idea

*Must
Start early

Adapt your site to old content and future needs.
Migrate early, keep importing.

Estimate generously. Double it.

Tips & tricks

(If we have time)

Save time: performance

* Disable search indexing
* Run migrations with Drush

Save time: reduced dataset

settings. local.php

Ssettings['my migration reduce factor'] = 100;

mySourcePlugin: :query()

Sreduce factor = Settings::get('my migration reduce factor');
1f (Sreduce factor && 1s int (Sreduce factor)) {
Squery->where ('MOD (a.1d, :reduce factor) = 0',
[':reduce factor' => $reduce_factor]);

Imports approximately 1 in every 100 items.

Manual edits... now what?

Run a migration on selected fields:

destination:
plugin: 'entity:node'
overwrlte properties:
— category

overwrite properties ignores all values except explicitly listed.

Shortcut: entity_generate

process:
tags:

plugin: explode
source: keywords
delimiter: ','

plugin: entity generate

No rollbacks, no mappings, no nothing.

Great for things that don't have a source ID.

Come for the software,
stay for the community

..

Thank you:

Audience | Sponsors | LimoenGroen | Drupal Community

Questions?

