
The MythsThe Myths**,,
MustsMusts** and Migraines and Migraines**

of Migrationsof Migrations

Marc van GendMarc van Gend
@marcvangend

Drupal Tech TalkDrupal Tech Talk
April 26, ezCompany, TilburgApril 26, ezCompany, Tilburg

Who are you?Who are you?
Developers
Project managers
Site owners ("the client")
None of the above

*
*
*
*

QuizQuiz
The key to a successful migration is...

A. Good clean source data
B. A committed, cooperating client
C. Plenty of development time

You were right! You were right!You were right! You were right!

Everybody was right!Everybody was right!

Non-Drupal to Drupal migrationsNon-Drupal to Drupal migrations
Source - Process - Destination
Setup
My First Migration™
Source data
Process plugins
Project context
Tips

*
*
*
*
*
*
*

**MythMyth
Migrations are ComplicatedMigrations are Complicated

Source.Source.
Process.Process.

Destination.Destination.
Migrations are straight-forward.

Literally.

SourceSource
Database, File, URL...
1 result per migration item
Defines unique Source ID

*
*
*

PHP:

class MySourcePlugin extends SourcePluginBase

Drupal Console:

drupal generate:plugin:migrate:source {}

ProcessProcess
Get, Concat, MigrateLookup, custom...
Assigns values to fields
Chainable

*
*
*

PHP:

class MyProcessPlugin extends ProcessPluginBase {}

Drupal Console:

drupal generate:plugin:migrate:process

DestinationDestination
Node, Term, User, Redirect, Setting, custom...
Writes collected data to Drupal DB
Can support rollback
Maps Source ID -> Destination ID

*
*
*
*

PHP:

class MyDestinationPlugin extends DestinationBase {}

Drupal Console:

(nope)

**MustMust
The right toolsThe right tools

Modules
Tools
Custom module
Test site

*
*
*
*

ModulesModules
Migrate (core)Migrate (core)

Migrate API and base functionality
Continuous migrations with ID mapping

Migrate PlusMigrate Plus
Define migrations as config entities

Additional plugins and enhancements
Data parsers and authentication

Examples

Migrate ToolsMigrate Tools
Drush commands and UI

ToolsTools
DrushDrush

Import migration config
Run migrations

Rollback, reset, status, etc.

Drupal ConsoleDrupal Console
Create plugins

Database managerDatabase manager
PhpStorm, phpMyAdmin

Custom moduleCustom module
migrate_demo

 ├── migrate_demo.info.yml

 ├── config

 │ └── install

 │ ├── migrate_plus.migration.demo_node_article.yml

 │ └── migrate_plus.migration_group.demo.yml

 └── src

 └── Plugin

 └── migrate

 ├── process

 │ └── TitleCleanup.php

 └── source

 └── DemoNodeArticle.php

Demo SiteDemo Site
SourceSource

Music database (Chinook):

Artist ⪪ Album

DrupalDrupal
Artist: Title
Album: Title, Artist, Release date, URL*

*

My First Migration™My First Migration™
Migrate Group
Migration
Go!

*
*
*

**MustMust
Handwritten YAMLHandwritten YAML
Enough about you, let's talk about me!

name: Marc

favorites:

 music: dEUS

 beer:

 - IPA

 - Triple

colleagues:

 -

 name: Dirk

 role: Support engineer

 -

 name: Joyce

 role: Drupal developer

Migration groupsMigration groups
Groups migrations (duh!)
Import all migrations in group
Shared configuration

*
*
*

Migration group configMigration group config
migrate_demo/config/install/migrate_plus.migration_group.demo.yml

id: demo

label: Demo Imports

description: A few demo imports, to demonstrate how to implement migrations.

source_type: SQL database

shared_configuration:

 source:

 key: migrate

dependencies:

 enforced:

 module:

 - migrate_demo

Migration source: DB settingsMigration source: DB settings
settings.php

$databases['migrate']['default'] = array (

 'database' => 'migrate_demo_source',

 'username' => 'migrate_demo_source',

 'password' => 'Secret!',

 'prefix' => '',

 'host' => '127.0.0.1',

 'port' => '3306',

 'namespace' => 'Drupal\\Core\\Database\\Driver\\mysql',

 'driver' => 'mysql',

);

Migration source: source pluginMigration source: source plugin
migrate_demo/src/Plugin/migrate/source/DemoNodeArtist.php

/**

 * Source plugin for artist content.

 *

 * @MigrateSource(

 * id = "demo_node_artist"

 *)

 */

class DemoNodeArtist extends SqlBase {

migrate_demo/src/Plugin/migrate/source/DemoNodeArtist.php

 /**

 * {@inheritdoc}

 */

 public function query() {

 $query = $this->select('Artist', 'a')

 ->fields('a', [

 'ArtistId',

 'Name',

]);

 return $query;

 }

migrate_demo/src/Plugin/migrate/source/DemoNodeArtist.php

 /**

 * {@inheritdoc}

 */

 public function fields() {

 $fields = [

 'ArtistId' => $this->t('Artist ID'),

 'Name' => $this->t('Artist name'),

];

 return $fields;

 }

migrate_demo/src/Plugin/migrate/source/DemoNodeArtist.php

Migration configMigration config
migrate_demo/config/install/migrate_plus.migration.demo_node_artist.yml

id: demo_node_artist # Migration ID

label: Artists # Human name

migration_group: demo

source:

 plugin: demo_node_artist # Data source

process:

 title: Name # Use the 'Name' value as title

 type:

 plugin: default_value

 default_value: artist # Node type is 'artist'

destination:

 plugin: entity:node # Save as a node

**MustMust
Importing your configImporting your config
$ drush config-import \

 --partial \

 --source=modules/custom/migrate_demo/config/install

Go!Go!

Or use the UI:

$ drush migrate-import demo_node_artist

Source dataSource data

Human interaction. Where things get messy.

**MythMyth
“The data is clean and complete”“The data is clean and complete”

**MigraineMigraine
Believe me. It's not.Believe me. It's not.

Getting the dataGetting the data
How can we access the data?

Direct access? Export? API?
How do we get updates?

How o�en?
Incremental?
With timestamps?

How about assets like PDF's and images?
What size are we talking about?

Number of items, GB's of files

Make some friends at the supplier's side.Make some friends at the supplier's side.

*
*

*
*
*
*

*
*

*

Analyze the provided dataAnalyze the provided data
Ask the most stupid questions you can think of.

What does it all mean?
Does everything have a unique, unchanging ID?

Do users have unique email addresses?
Do all articles have titles?

Are records being added and deleted?
Yes ⇒ Are unique ID's reused?

Does the data contain duplicates?
No ⇒ Really? Did you check?

Do not assume people know their own data.Do not assume people know their own data.

*
*

*
*

*
*

*
*

Start planningStart planning
Make choices

Don't spend 4h automating what takes 8h manually
Agree what you will (not) do

Have the result tested
Functional
Content

Write a plan for the go-live
Content freeze
Pick dates
Instruct editors

*
*
*

*
*
*

*
*
*
*

**MythMyth
Migrations are SimpleMigrations are Simple

(I know. I said migrations are straight-forward.)

Prepare to write custom processors.

(psst, don't forget to start the demo)

Processors are AwesomeProcessors are Awesome
Default process plugin: Get

“Get the 'Name' property from the current row and use it as title”

process:

 title: Name

Shorthand for:

process:

 title:

 plugin: get

 source: Name

Processors can haveProcessors can have
configurationconfiguration

process:

 type: # Entity type

 plugin: default_value # Plugin ID

 default_value: album # Fixed value

In the plugin:

 $this->configuration['default_value']; // Returns "album".

Linking migrations togetherLinking migrations together
The migration_lookup process plugin

“Get the ID of the entity which was created
when demo_node_artist imported this ArtistID.”

process:

 field_artist: # Entity reference field

 plugin: migration_lookup

 migration: demo_node_artist # Linked migration ID

 source: ArtistId # Source ID

Chaining process pluginsChaining process plugins
process:

 uid:

 -

 plugin: author_deduplicate # Custom deduplication processor

 source: author_id

 -

 plugin: migration_lookup # Migration Lookup returns a UID

 migration: users

 # No 'source' property, because chaining!

 -

 plugin: default_value # Result is passed to the next processor

 default_value: 44 # If empty, use UID 44

A custom processorA custom processor
migrate_demo/src/Plugin/migrate/process/SpotifyInfo.php

/**

 * Retrieves album info through the Spotify Web API.

 *

 * @MigrateProcessPlugin(

 * id = "spotify_info",

 *)

 */

class SpotifyInfo extends ProcessPluginBase {

migrate_demo/src/Plugin/migrate/process/SpotifyInfo.php

 /**

 * {@inheritdoc}

 */

 public function transform($value, MigrateExecutableInterface $migrate_executabl

 $type = $this->configuration['type'];

 $query_info = $this->getSpotifyQueryInfo($value, $type);

 $spotify_result = $this->spotifyQuery($query_info['query'], $type);

 $property = $this->configuration['property'];

 $data_path = array_merge($query_info['parents'], explode('][', $property));

 return NestedArray::getValue($spotify_result, $data_path);

 }

migrate_demo/src/Plugin/migrate/process/SpotifyInfo.php

 protected function getSpotifyQueryInfo($value, $type) {

 switch ($type) {

 case 'album':

 // Expect $value to be an array: [album title, artist name].

 list($title, $artist) = $value;

 $query = "album:$title artist:$artist";

 $parents = ['albums', 'items', 0];

 break;

 }

 if (empty($query)) {

 throw new MigrateSkipProcessException('Could not build a query.');

 }

 return ['query' => $query, 'parents' => $parents];

 }

migrate_demo/src/Plugin/migrate/process/SpotifyInfo.php

A custom processor: configA custom processor: config
process:

 field_release_date:

 plugin: spotify_info

 source:

 - Title

 - ArtistName

 type: album

 property: release_date

 field_spotify_url/uri: # Link fields are composed of multiple values

 plugin: spotify_info

 source:

 - Title

 - ArtistName

 type: album

 property: external_urls][spotify # Will be split into an array

**MigraineMigraine
A migration never comes aloneA migration never comes alone

If everything was perfect, there wouldn't be a migration, right?

Client goalsClient goals
What they say What it means

New site New URL's

New design An image on every node

New navigation Revised categories

New workflow Different input filters

...and the existing content will magically fit in.

Complexity = changes²Complexity = changes²
Reduce the number of changes introduced with the migration.

Spotify process plugin = A really bad idea

**MustMust
Start earlyStart early

Adapt your site to old content and future needs.

Migrate early, keep importing.

Estimate generously. Double it.

Tips & tricksTips & tricks
(If we have time)

Save time: performanceSave time: performance
Disable search indexing
Run migrations with Drush*

*

Save time: reduced datasetSave time: reduced dataset

Imports approximately 1 in every 100 items.

settings.local.php

$settings['my_migration_reduce_factor'] = 100;

mySourcePlugin::query()

$reduce_factor = Settings::get('my_migration_reduce_factor');

if ($reduce_factor && is_int($reduce_factor)) {

 $query->where('MOD(a.id, :reduce_factor) = 0',

 [':reduce_factor' => $reduce_factor]);

}

Manual edits... now what?Manual edits... now what?
Run a migration on selected fields:

overwrite_properties ignores all values except explicitly listed.

destination:

 plugin: 'entity:node'

 overwrite_properties:

 - category

Shortcut: entity_generateShortcut: entity_generate

No rollbacks, no mappings, no nothing.

Great for things that don't have a source ID.

process:

 tags:

 -

 plugin: explode

 source: keywords # Eg. "Foo,Bar,Baz"

 delimiter: ',' # Explode comma separated string to array

 -

 plugin: entity_generate # Generate taxonomy terms that don't exist

Come for the software,Come for the software,
stay for the communitystay for the community

Thank you:Thank you:
Audience | Sponsors | LimoenGroen | Drupal Community

Questions?Questions?

